Документ подписан простой электронной подписью

Информация о владельце: ФИО: Косет Сестовов задание для диагностического тестирования по дисциплине:

Должность: ректор

Дата подписания: 06.06.2024 06:43:52

Функциональный анализ, 5 семестр

Уникальный программный ключ: e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Код, направление подготовки	1.03.02, Прикладная математика и информатика
Направленность (профиль)	Прикладная математика и информатика
Форма обучения	очная
Кафедра- разработчик	Кафедра прикладной математики
Выпускающая кафедра	Кафедра прикладной математики

Проверяемая компетенция	Задание	Варианты ответов	Тип сложности вопроса	Кол-во за правильный ответ
ОПК-1.1	1. Какое из перечисленных множеств является одновременно открытым и замкнутым в пространстве вещественных чисел?	1) [0, 1) 2) множество натуральных чисел N 3) (-∞, +∞) 4) множество рациональных чисел Q	низкий	1
ОПК-1.1	2. Какое из перечисленных множеств не является ни открытым и ни замкнутым в пространстве вещественных чисел?	1) [0, 1) 2) [0, 1] 3) (0, 1) 4) множество натуральных чисел N	низкий	1
ОПК-1.1	3. Укажите неравенство треугольника в метрическом пространстве.	1) $\rho(a, b) \le \rho(a, c) \cdot \rho(c, b)$ 2) $\rho(a, b) \ge \rho(a, c) + \rho(c, b)$ 3) $\rho(a, b) \ge \rho(a, c) - \rho(c, b)$ 4) $\rho(a, b) \le \rho(a, c) + \rho(c, b)$	низкий	1
ОПК-1.1	4. Заполните пропуск: Пересечение любого числа замкнутых множеств является [[]].	1) компактным 2) ограниченным 3) открытым 4) замкнутым	низкий	1
ОПК-1.1	5. Заполните пропуск: Пересечение любого числа открытых множеств [[]].	1) открыто 2) не обязательно является открытым или замкнутым 3) открыто и замкнуто 4) замкнуто	низкий	1

ОПК-1.1	6. Пусть дано некоторое множество. Какие из указанных точек всегда ему принадлежат?	1) граничная 2) внутренняя 3) изолированная 4) предельная	средний	1
ОПК-1.1	7. Выберите эквивалентные определения замыкания множества.	1) совокупность всех точек прикосновения 2) объединение множества и его изолированных точек 3) совокупность всех граничных точек 4) объединение множества и его границы	средний	1
ОПК-1.1	8. Выберите все верные утверждения.	1) образ пересечения множеств есть пересечение образов 2) образ суммы множеств есть сумма образов 3) прообраз пересечения множеств есть пересечение прообразов 4) прообраз суммы множеств есть сумма прообразов	средний	1
ОПК-1.1	9. Закончите утверждение: Метрическое пространство компактно тогда и только тогда, когда оно является	1) полным и предкомпактным 2) замкнутым и ограниченным 3) открытым и предкомпактным 4) замкнутым и сепарабельным	средний	1
ОПК-1.1	10. Укажите, какое из перечисленных множеств не является счетным.	1) множество всех последовательностей целых чисел, содержащих лишь конечное число ненулевых элементов 2) множество всех последовательностей, состоящих из нулей и единиц 3) множество рациональных чисел 4) множество всех трехмерных векторов, имеющих рациональные координаты	средний	1
ОПК-1.1	11. Какая сходимость имеет место в пространстве C[0, 1]?	1) равномерная 2) в среднем 3) сходимость не более чем в одной точке 4) в среднем квадратичном	средний	1
ОПК-1.1	12. Заполните пропуск: Образ компактного множества при [[]]	1) сюръективном 2) взаимно-однозначном 3) обратном 4) непрерывном	средний	1

	отоброжовии			
	отображении			
	является			
	компактным			
	множеством.	1) a/f/a) f/h)\ = a/a h)	000000	1
ОПК-1.1	13. Заполните	1) $\rho(f(a), f(b)) = \rho(a, b)$	средний	1
	пропуск:	2) $\rho(a, b) = f(\rho(a,b))$		
		3) $\rho(a, b) = f(a, b)$		
	Отображение f	4) $\rho(f(a), b) = \rho(a, f(b))$		
	метрического			
	пространства Х в			
	метрическое			
	пространство Ү			
	называется			
	изометрическим,			
	если для любых			
	точек a, b из X			
	выполняется			
0516.4.4		14)		
ОПК-1.1	14. Пусть дано	1) $x = 2$	средний	1
	множество [0, 1)U{2}.	(2) x = 1/2		
	Соотнесите	3) x = 1		
	указанным точкам их	4) x = 3		
	тип.			
		а) внутренняя		
		b) предельная точка, не		
		принадлежащая		
		множеству		
		с) внешняя		
		d) изолированная		
000	45 11-8			4
ОПК-1.1	15. Найти		средний	1
	расстояние между			
	функциями			
	$x(t) = t^3 \text{ M } y(t) = t^2 - 1 \text{ B}$			
00144	пространстве С[0, 1].	4)		4
ОПК-1.1	16. Какими согласно	1) непрерывная	высокий	1
	теореме Арцела	дифференцируемость		
	двумя свойствами	2) изометричность		
	должно обладать	3) равномерная		
	множество функций,	ограниченность		
	чтобы оно было	4) равностепенная		
	предкомпактно в	непрерывность		
000	C[a, b]?	4)		4
ОПК-1.1	17. Выберите из	1) любая	высокий	1
	перечисленных	фундаментальная		
	критериев полноты	последовательность		
	метрическом	имеет предел		
	пространстве	2) из любого открытого		
	эквивалентные.	покрытия можно выбрать		
		конечное подпокрытие		
		3) последовательность		
		вложенных замкнутых		
		шаров, радиусы которых		
		стремятся к 0, имеет		
		непустое пересечение		
		4) у любого оператора		

		T	1	
		существует единственная		
		неподвижная точка		
ОПК-1.1	18. Выберите	1) прообраз любого	высокий	1
	эквивалентные	открытого множества		
	критерии	открыт		
	непрерывности	2) образ любого		
	отображения.	открытого множества		
		открыт		
		3) прообраз любого		
		замкнутого множества		
		замкнут		
		4) образ любого		
		замкнутого множества		
		замкнут		
ОПК-1.1	19. Выберите все	1) любое метрическое	высокий	1
	верные	пространство – полное		
	утверждения.	2) у всякого метрического		
		пространства существует		
		пополнение		
		3) в полном метрическом		
		пространстве сжимающее		
		отображение имеет		
		единственную		
		неподвижную точку		
		4) в полном метрическом		
		пространстве сжимающее		
		отображение имеет		
		бесконечно много		
		неподвижных точек		
ОПК-1.1	20. В пространстве ℓ₁		высокий	1
	найти расстояние от			
	точки $x = (3, 3/2, 3/4,$			
	3/8,) до точки			
	y = (0, 0, 0, 0,).			

Тестовое задание для диагностического тестирования по дисциплине:

Функциональный анализ, 6 семестр

Код, направление подготовки	01.03.02, Прикладная математика и информатика
Направленность (профиль)	Прикладная математика и информатика
Форма обучения	очная
Кафедра- разработчик	Кафедра прикладной математики
Выпускающая кафедра	Кафедра прикладной математики

Проверяемая компетенция	Задание	Варианты ответов	Тип сложности вопроса	Кол-во баллов за правильный ответ
ОПК-1.1	1. Укажите неравенство треугольника в нормированном пространстве.	 1) xy ≤ x + y 2) x - y ≤ x - y 3) x + y ≤ x + y 4) x + y ≤ x ⋅ y 	низкий	1
ОПК-1.1	2. Укажите правильное определение метрики в нормированном пространстве.	1) $\rho(x, y) = x - y $ 2) $\rho(x, y) = x + y $ 3) $\rho(x, y) = xy $ 4) $\rho(x, y) = x - y $	низкий	1
ОПК-1.1	3. Укажите правильное определение нормы в евклидовом пространстве.	1) $ x = (x, x)$ 2) $ x = \sqrt{x}$ 3) $ x = \sqrt{(x, x)}$ 4) $ x = \sqrt{(x, 0)}$	низкий	1
ОПК-1.1	4. Заполните пропуск: Для линейного функционала f множество	1) образом 2) ядром 3) нормой 4) фактор-пространством	низкий	1

	{x f(x) = 0} называется [[]]			
ОПК-1.1	5. Заполните пропуск:	1) ограниченное 2) полное	низкий	1
	Гильбертово пространство — это евклидово пространство [[]] относительно нормы, порожденной скалярным произведением.	3) компактное 4) сепарабельное		
ОПК-1.1	6. Укажите множества, которые образуют в пространстве C[-1, 1] замкнутые подпространства.	 монотонные функции четные функции многочлены многочлены степени дополненные нулевым многочленом 	средний	1
ОПК-1.1	7. Укажите те подмножества числовой прямой, которые всегда измеримы по Лебегу.	1) открытые 2) ограниченные 3) несчетные 4) замкнутые	средний	1
ОПК-1.1	8. Как называется измеримая функция, множество значений которой не более чем счетно?	 непрерывная счетная борелева простая 	средний	1
ОПК-1.1	9. Как называется система множеств, замкнутая относительно взятия пересечения и симметрической разности?	 полугруппа группа кольцо полукольцо 	средний	1
ОПК-1.1	10. Как называется пространство всех непрерывных линейных функционалов над нормированным пространством?	1) фактор-пространство 2) сопряженное пространство 3) евклидово пространство 4) ортогональное дополнение	средний	1
ОПК-1.1	11. Заполните	1) евклидово 2) унитарное	средний	1

	пропуск:	3) топологическое		
		4) банахово		
	[[]]			
	пространство – это			
	полное			
	нормированное пространство.			
ОПК-1.1	12. Заполните	1) неотрицателен	средний	1
	пропуск:	2) взаимно-однозначен		
	Линейный оператор	3) непрерывен		
	ограничен тогда и	4) изометричен		
	только тогда, когда			
ОПК-1.1	он [[]] 13. Заполните	1) полукольцом	средний	1
	пропуск:	2) алгеброй		
	Ka=1	3) полем		
	Кольцо множеств с единицей	4) б-кольцом		
	называется			
0.714.4	[<u>]</u>].	4) 0		
ОПК-1.1	14. Сопоставьте	1) ℓ_2	средний	1
	пространствам в соответствие их	2) C[a, b] 3) CL₁[a, b]		
	нормы.	4) CL ₂ [a, b]		
	Tropinish	., O = 2[a, a]		
		a)		
		$\max_{[a,\ b]} \mathbf{x}(t) $		
		b)		
		h		
		$\int_{0}^{b} x^{2}(t)dt$		
		$\int_{\Omega} x^{-\epsilon}(t)dt$		
		(c)		
		b		
		$\int x(t) dt$		
		a a		
		∞		
		$\int_{k=1}^{\infty} x_k^2$		
		$\sqrt{k=1}$		
ОПК-1.1	15. Чему равна мера		средний	1
	Лебега счетного			
	множества?			

ΟΠK-1.1	16. Из перечисленных систем множеств числовой прямой выберите те, которые являются о-алгебрами.	1) совокупность всех отрезков 2) совокупность всех измеримых по Лебегу множеств 3) совокупность всех числовых множеств 4) совокупность всех конечных множеств	высокий	1
	17. Выберите все верные утверждения.	1) в сепарабельном евклидовом пространстве существует ортонормированный базис 2) ряд Фурье любого элемента всегда сходится к этому же элементу 3) для любой ортонормированной системы всегда справедливо неравенство Бесселя 4) для любой ортонормированной системы всегда справедливо равенство Гарсеваля	высокий	1
ОПК-1.1	18. Выберите все верные утверждения об интеграле Лебега.	1) интеграл от функции f = 1 по множеству А равен мере множества А 2) интеграл от произведения двух функций равен произведению их интегралов 3) любая функция, интегрируемая по Лебегу, интегрируема по Риману 4) интеграл от любой функции по множеству меры 0 равен 0	высокий	1
ОПК-1.1	19. Выберите все верные утверждения об измеримых функциях.	1) любая неограниченная функция интегрируема по Лебегу 2) значение интеграла Римана, если он существует, совпадает со значением интеграла Лебега	высокий	1

		3) интеграл Лебега может принимать лишь неотрицательные значения 4) если функция f интегрируема по Лебегу, то и функция f также интегрируема		
ОПК-1.1	20. Найдите меру Лебега множества		высокий	1